KCOS e-Passport Version 5.1 – SAC, EAC and AA on S3D384E Certification Report

Certification No.: KECS-ISIS-1372-2025

2025. 9. 30.

History of Creation and Revision				
No. Da	Data	Revised	Description	
	Date	Pages	Description	
			Certification report for KCOS e-Passport Version 5.1 –	
00	2025.09.30	09.30 -	SAC, EAC and AA on S3D384E	
			- First documentation	

Certification Report

This document is the certification report for KCOS e-Passport Version 5.1 – SAC, EAC and AA on S3D384E of KOMSCO.

The Certification Body

IT Security Certification Center

The Evaluation Facility

Telecommunications Technology Association (TTA)

Table of Contents

1.	Exec	utive Summary	5
2.	Ident	ification	7
3.	Secu	rity Policy	9
4.	Assu	mptions and Clarification of Scope	10
5.	Archi	itectural Information	11
6.	Docu	mentation	12
7.	TOE	Testing	12
8.	Evalu	uated Configuration	14
9.	Resu	Its of the Evaluation	14
	9.1	Security Target Evaluation (ASE)	15
	9.2	Life Cycle Support Evaluation (ALC)	16
	9.3	Guidance Documents Evaluation (AGD)	17
	9.4	Development Evaluation (ADV)	17
	9.5	Test Evaluation (ATE)	18
	9.6	Vulnerability Assessment (AVA)	19
	9.7	Evaluation Result Summary	19
10.	Reco	mmendations	21
11.	Secu	rity Target	22
12.	Acro	nyms and Glossary	22
13.	Biblio	ography	25

1. Executive Summary

This report describes the evaluation result drawn by the evaluation facility on the results of the EAL5+ evaluation of KCOS e-Passport Version 5.1 – SAC, EAC and AA on S3D384E with reference to the Common Criteria for Information Technology Security Evaluation ("CC" hereinafter) [1][3]. It describes the evaluation result and its soundness and conformity.

The Target of Evaluation (TOE) is the composite product which is consisting of the certified contactless integrated circuit chip(IC chip) and embedded software (IC chip operating system(COS) and the application of machine readable travel documents(MRTD application).

The TOE provides Supplemental Access Control (SAC), Active Authentication (AA), and Extended Access Control (EAC) defined in the ICAO's Machine Readable Travel Documents, DOC 9303, 7th edition [6], the BSI's Advanced Security Mechanisms Machine Readable Travel Documents and eIDAS Token, Version 2.20 [7]. Basic Access Control (BAC) is also supported by the TOE, but this is not considered in the scope of this evaluation due to the fact that BAC provides only resistance against enhanced basic attack potential (i.e. AVA_VAN.3).

The TOE(KCOS e-Passport Version 5.1 – SAC, EAC and AA on S3D384E) is composed of the following components:

- IC chip: S3D384E revision 2 provided by Samsung Electronics, see ANSSI-CC-2024/02-R01, and
- Embedded software: KCOS e-Passport Version 5.1 SAC, EAC and AA provided by KOMSCO.

The evaluation of the TOE has been carried out by Telecommunications Technology Association (TTA) and completed on September 25, 2025. This report grounds on the evaluation technical report (ETR) TTA had submitted [8] and the Security Target (ST) [9][10].

The ST is based on the certified Protection Profile (PP) Machine Readable Travel Document using Standard Inspection Procedure with PACE Version 1.01 ("PACE PP" hereinafter) [11], Machine Readable Travel Document with "ICAO Application", Extended Access Control with PACE Version 1.3.2 ("EAC PP" hereinafter) [12]. All Security Assurance Requirements (SARs) in the ST are based only upon assurance

component in CC Part 3, and the TOE satisfies the SARs of Evaluation Assurance Level EAL5 augmented by ALC_DVS.2 and AVA_VAN.5. Therefore the ST and the resulting TOE is CC Part 3 conformant. The Security Functional Requirements (SFRs) are based upon both functional components in CC Part 2 and a newly defined component in the Extended Component Definition chapter of the ST, and the TOE satisfies the SFRs in the ST. Therefore the ST and the resulting TOE is CC Part 2 extended.

The TOE Security Functional Requirements are implemented by the following TOE Security Functionalities. For more details refer to the ST [9][10].

TOE Security Features	Brief Summary		
SF.PAC_AUTH	Personalization Agent Authentication		
SF.SAC_AUTH	SAC Authentication		
SF.EACCA_AUTH	EAC-CA		
SF.EACTA_AUTH	EAC-TA		
SF.ACTIVE_AUTH	AA		
SF.SEC_MESSAGE	Secure Messaging		
SF.ACC_CONTROL	Access Control for Personalization Agent and IS,		
	Personalization and Management		
SF.RELIABILITY	TSF testing, protection against tempering and observation,		
	preservation of secure state, residual information protection		
SF.IC	IC chip security functionality		

[Table 1] TOE Security Functionalities

Certification Validity: The certificate is not an endorsement of the IT product by the government of Republic of Korea or by any other organization that recognizes or gives effect to this certificate, and no warranty of the IT product by the government of Republic of Korea or by any other organization recognizes or gives effect to the certificate, is either expressed or implied.

2. Identification

The TOE is composite product consisting of the following components and related guidance documents.

	Identifier	Release	Delivery Form / Method
HW/SW	S3D384E ATP1 Secure RSA/ECC/SHA Library	Revision 2 V2.01	IC Chip Module (Note: The SW is
	DTRNG FRO M library Secure Boot loader	V1.4 V0.2	contained in FLASH)/
SW	KCOS e-Passport Version 5.1 - SAC, EAC and AA	Rev 1	By a person(HW), PGP mail(SW)
Document	Operational User Guidance: EPS-05-QT-OPE-SAC-2.3	V2.3	Softcopy or Hardcopy /
	Preparative Procedures Guidance: EPS-05-QT-PRE-SAC-2.4	V2.4	By PGP mail or a person

[Table 2] TOE identification

The TOE is composite product that should be considered in the Composite Product life cycle. Composite product integrator performs Composite product integration(FLASH code download into IC chip), preparation and shipping to the personalization for the Composite product (Composite Product Integration). After Composite Product Integration, the ePassport manufacturer (i.e., inlay and e-Cover manufacturer) embeds the TOE into the passport booklet. Then, the Personalization Agency performs personalization and testing stage where the User Data/TSF Data is loaded into the IC's memory.

The Personalization Agency can only access the TOE using the securely delivered personalization key set. The personalization key set and the Guidance documents are securely delivered (through PGP or directly from the SW developer to the Personalization Agency).

Also, the certified IC chip which is a component of the TOE provides Contact interfaces and Contactless interfaces, the Contact interfaces are not used by the TOE. Thus, the Type A Contactless interface is used by the TOE.

For details on the IC chips, the IC dedicated software and the crypto libraries, see the

documentation under ANSSI-CC-2024/02-R01 [13].

[Table 3] summarizes additional information for scheme, developer, sponsor, evaluation facility, certification body, etc..

Scheme	Korea IT Security Evaluation and Certification Guidelines				
	(Ministry of Science and ICT Guidance No. 2022-61,				
	October 31, 2022)				
	Korea IT Security Evaluation and Certification Regulation				
	(Ministry of Science and ICT-ITSCC, May 17, 2021)				
TOE	KCOS e-Passport Version 5.1 - SAC, EAC and AA on				
	S3D384E				
	- K5.1.01.SS.D38E.02(S3D384E)				
	 K5.1: KCOS e-Passport Version 5.1 				
	● 01: Rev1				
	 SS.D38E.02: IC chip identifier (Samsung S3D384E 				
	Revision 2)				
	FLASH images: KCOS51_384E.hex-1.2				
Common Criteria	Common Criteria for Information Technology Security				
	Evaluation, CC:2022 Revision 1, CCMB-2022-11-001 ~				
	CCMB-2022-11-005, November 2022				
	Errata and Interpretation for CC:2022 (Release 1) and				
	CEM:2022 (Release 1), Version 1.1, CCMB-2024-07-002,				
	July 2024				
EAL	EAL5+				
	(augmented by ALC_DVS.2 and AVA_VAN.5)				
Developer	KOMSCO				
Sponsor	KOMSCO				
Evaluation Facility	Telecommunications Technology Association (TTA)				
Completion Date of	September 25, 2025				
Evaluation					
Certification Body	IT Security Certification Center				

[Table 3] Additional identification information

3. Security Policy

The ST [9][10] for the TOE claims strict conformance to the PACE PP [11], EAC PP [12], and the TOE complies security policies defined in the PP [11][12] by security objectives and security requirements based on the ICAO document [6], BSI specification [7]. Thus the TOE provides security features SAC, EAC(EAC-CA, EAC-TA), AA.

Additionally, the TOE provides security features for Personalization Agent to protect initialization data and application data (during pre-personalization and personalization phase):

- Personalization Agent authentication, ensures only authorized entity can access to the TOE during pre-personalization and personalization phase
- Secure messaging, ensures transmitted data to be protected from unauthorized disclosure and modification during pre-personalization and personalization phase.

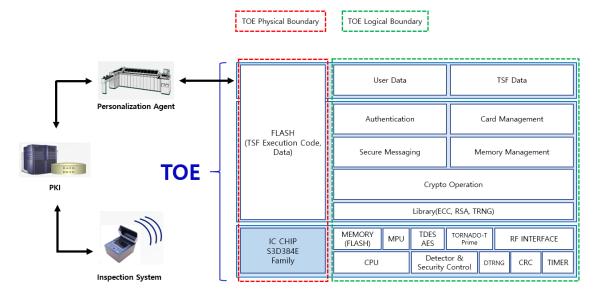
Furthermore, the TOE is composite product based on the certified IC chip, the TOE utilizes and therefore provides some security features covered by the IC chip certification such as Security sensors/detectors, Life time detector, Dedicated tamper-resistant design based on synthesizable glue logic and secure topology, Dedicated hardware mechanisms against side-channel attacks, Secure DES and AES Symmetric Cryptography support, Secure TORNADO-T Prime coprocessor for the support of RSA and ECC cryptographic operations, and One Hardware Digital True Random Number Generator (DTRNG FRO M) that meets PTG.2 class of BSI-AIS31 (German scheme) and some of ANSSI RGS requirements (French Scheme). For more details refer to the Security Target Lite for the IC chip [14].

4. Assumptions and Clarification of Scope

The following assumptions describe the security aspects of the operational environment in which the TOE will be used or is intended to be used (for the detailed and precise definition of the assumption refer to the ST [9][10], chapter 3.1):

 The issuing and receiving States or Organisations establish a public key infrastructure for passive authentication i.e. digital signature creation and verification for the logical travel document. The issuing State or Organisation runs a Certification Authority (CA) which securely generates, stores and uses the Country Signing CA Key pair. The CA keeps the Country Signing CA Private Key secret and is recommended to distribute the Country Signing CA Public Key to ICAO, all receiving States maintaining its integrity.

The Document Signer (i) generates the Document Signer Key Pair, (ii) hands over the Document Signer Public Key to the CA for certification, (iii) keeps the Document Signer Private Key secret and (iv) uses securely the Document Signer Private Key for signing the Document Security Objects of the travel documents.


The CA creates the Document Signer Certificates for the Document Signer Public Keys that are distributed to the receiving States and Organisations. It is assumed that the Personalisation Agent ensures that the Document Security Object contains only the hash values of genuine user data according to ICAO-9303.

- The Extended Inspection System (EIS) for global interoperability (i) includes the Country Signing CA Public Key and (ii) implements the terminal part of PACE and/or BAC.
 - BAC may only be used if supported by the TOE. If both PACE and BAC are supported by the TOE and the IS, PACE must be used. The EIS reads the logical travel document under PACE or BAC and performs the Chip Authentication v.1 to verify the logical travel document and establishes secure messaging. The Chip Authentication Protocol v.1 is skipped if PACE-CAM has previously been performed. EIS supports the Terminal Authentication Protocol v.1 in order to ensure access control and is authorized by the issuing State or Organisation through the Document Verifier of the receiving State to read the sensitive biometric reference data.
- The issuing and receiving States or Organisations establish a public key infrastructure for card verifiable certificates of the Extended Access Control. The Country Verifying Certification Authorities, the Document Verifier and Extended Inspection Systems hold authentication key pairs and certificates for their public keys encoding the access control rights. The Country Verifying Certification Authorities of the issuing States or Organisations are signing the certificates of the Document Verifier and the Document Verifiers are signing the certificates of the Extended Inspection Systems of the receiving States or Organisations. The issuing States or Organisations distribute the public keys of their Country Verifying Certification Authority to their travel document's chip.

Furthermore, some aspects of threats and organisational security policies are not covered by the TOE itself, thus these aspects are addressed by the TOE environment: Examination of the physical part of the MRTD, MRTD holder Obligations, Issuing of the MRTD, Terminal operating, etc. Details can be found in the ST [9][10], chapter 3.2, 3.3 and 4.2.

5. Architectural Information

[Figure 1] show the physical scope of the TOE. The TOE is the composite product which is consisting of the certified contactless IC chip and the embedded software (i.e., COS and MRTD application).

[Figure 1] Scope of the TOE

- IC chip provides security features such as Security sensors/detectors, MPU(memory Protection Unit), Secure DES and AES Symmetric Cryptography support, Secure coprocessor TONADO-T Prime for RSA and ECC Cryptographic Support, and One Hardware Digital True Random Number Generator (DTRNG FRO M).
- COS, which processes commands and manages files according to ISO/IEC 7816-4, 8, and 9 [21], executes MRTD application and provides functions for management of application data. The COS is contained in FLASH.
- Application provides MRTD application(SAC, AA, and EAC according to the

- ICAO document [6], BSI Specification [7]). It also provides additional security mechanisms for personalization agent such as authentication and personalization of MRTD. The Application is contained in FLASH.
- Application Data is consisting of User Data and TSF Data. The Application Data is contained in FLASH.

For the detailed description is referred to the ST [9][10].

6. Documentation

The following documentation is evaluated and provided with the TOE by the developer to the customer.

Identifier	Release	Date
KCOS e-Passport Version 5.1 – SAC, EAC and AA on	V2.3	Sep. 22, 2025
S3D384E Operational User Guidance V2.3(EPS-05-		
QT-OPE-SAC-2.3)		
KCOS e-Passport Version 5.1 – SAC, EAC and AA on	V2.4	Sep. 22, 2025
S3D384E Preparative Procedures Guidance		
V2.4(EPS-05-QT-PRE-SAC-2.4)		

[Table 4] Documentation

7. TOE Testing

The Developer's Testing was performed on the final TOE, consisting of the platform, COS, and application.

Tests for the TOE are:

- Standard and Security Mechanisms Test
 - Layer 6~7 MRTD Application Protocol & Data Test (Security and Command Test, Logical Data Structure Tests, etc.), which tests MRTD application according to Standard Test Specifications (the ICAO Technical Report RF Protocol and Application Test Standard, BSI TR-03105, etc.),

- Operational Mode Test: Additional features test which are not defined in the ICAO document [6], BSI specification [7] such as pre-personalization, personalization and inspection, Positive and Negative Test for APDUs in each TOE life cycle(5 phases), life cycle state change, residual information removal, etc.
- Other Test: Layer 3~4 RF Protocol Activation and Transmission Test (anticollision test, etc.)

The developer tested all the TSF and analyzed testing results according to the assurance component ATE_COV.2. This means that the developer tested all the TSFI defined for each life cycle state of the TOE, and demonstrated that the TSFI behaves as described in the functional specification.

The developer tested both subsystems (including their interactions) and modules (including their interfaces), and analyzed testing results according to the assurance component ATE_DPT.3.

The developer correctly performed and documented the tests according to the assurance component ATE_FUN.1.

The evaluator performed all the developer's tests and conducted independent testing based upon test cases devised by the evaluator. The TOE and test configuration are identical to the developer's tests. The tests cover preparative procedures, according to the guidance. Some tests were performed by design and source code analysis to verify fulfillment of the requirements of the underlying platform to the COS and Application. The implementation of the requirements of the platform's ETR and guidance as well as of the MRTD security mechanisms was verified by the evaluators.

Also, the evaluator conducted vulnerability analysis and penetration testing based upon test cases devised by the evaluator resulting from the independent search for potential vulnerabilities. These test cases cover testing APDU commands, bypass, fault injection attacks, and so on. No exploitable vulnerabilities by attackers possessing high attack potential were found from penetration testing.

The evaluator confirmed that all the actual testing results correspond to the expected testing results. The evaluator testing effort, the testing approach, configuration, depth, and results are summarized in the ETR [8].

8. Evaluated Configuration

The TOE is KCOS e-Passport Version 5.1 – SAC, EAC and AA on S3D384E. The TOE is composite product consisting of the following components:

- IC chips: S3D384E Revision 2 (ANSSI-CC-2024/02-R01)
- Embedded software: KCOS e-Passport Version 5.1 SAC, EAC and AA

The TOE is identified by the name, version and release number. The TOE identification information is provided by the command-response APDU following:

- Command APDU: 80FB000113
- Part of Response APDU: D38E 4250 4248 4252 4257 4B53 5194 51 01 02
 9000
 - D38E: IC chip identifier (S3D384E)
 - 4250: IC Manufacturer (Samsung)
 - 4248: IC Date (YDDD, 2024. 9. 4)
 - 4B53: OS ID (KCOS e-Passport)
 - 5194: OS Date (YDDD, 2025. 7. 13)
 - 51: OS Level (Version 5.1)
 - 01: OS Release Level (Rev 1)
 - 02: IC Chip Version (Revision 2)
 - 9000: Response APDU Status Word

And the guidance documents listed in this report chapter 6, [Table 4] were evaluated with the TOE.

9. Results of the Evaluation

The evaluation facility provided the evaluation result in the ETR [8] which references Work Package Reports for each assurance requirement and Observation Reports.

The evaluation result was based on the CC [1][3] and CEM [2][3], and CCRA supporting documents for the Smartcard and similar device [16], [17], [18], [19], [23], [24]. Also the evaluation facility utilized German scheme's Evaluation Methodology for CC Assurance Class for EAL5+ and EAL6 [15] under confirmation of the CB.

As a result of the evaluation, the verdict PASS is assigned to all assurance

9.1 Security Target Evaluation (ASE)

The ST Introduction correctly identifies the ST and the TOE, and describes the TOE in a narrative way at three levels of abstraction (TOE reference, TOE overview and TOE description), and these three descriptions are consistent with each other. Therefore the verdict PASS is assigned to ASE_INT.1.

The Conformance Claim properly describes how the ST and the TOE conform to the CC and how the ST conforms to PPs and packages. Therefore the verdict PASS is assigned to ASE_CCL.1.

The Security Problem Definition clearly defines the security problem intended to be addressed by the TOE and its operational environment. Therefore the verdict PASS is assigned to ASE_SPD.1.

The Security Objectives adequately and completely address the security problem definition and the division of this problem between the TOE and its operational environment is clearly defined. Therefore the verdict PASS is assigned to ASE_OBJ.2.

The Extended Components Definition has been clearly and unambiguously defined, and it is necessary. Therefore the verdict PASS is assigned to ASE_ECD.1.

The Security Requirements is defined clearly and unambiguously, and it is internally consistent and the SFRs meet the security objectives of the TOE. Therefore the verdict PASS is assigned to ASE_REQ.2.

The TOE Summary Specification addresses all SFRs, and it is consistent with other narrative descriptions of the TOE. Therefore, the verdict PASS is assigned to ASE_TSS.1.

The consistency of composite product ST and its related base component ST has been confirmed. Therefore, the verdict PASS is assigned to ASE_COMP.1

Also, the evaluator confirmed that the ST of the composite TOE does not contradict the ST of the IC chip according to the CCRA supporting document Composite Product Evaluation [16].

Thus, the ST is sound and internally consistent, and suitable to be used as the basis for the TOE evaluation.

The verdict PASS is assigned to the assurance class ASE.

9.2 Life Cycle Support Evaluation (ALC)

The developer has used a documented model of the TOE life-cycle. Therefore, the verdict PASS is assigned to ALC_LCD.1.

The developer has used well-defined development tools (e.g. programming languages or computer-aided design (CAD) systems) that yield consistent and predictable results, and implementation standards have been applied. Therefore, the verdict PASS is assigned to ALC_TAT.2.

The developer has clearly identified the TOE and its associated configuration items, and the ability to modify these items is properly controlled by automated tools, thus making the CM system less susceptible to human error or negligence. Therefore, the verdict PASS is assigned to ALC_CMC.4.

The configuration list includes the TOE, the parts that comprise the TOE, the TOE implementation representation, security flaws, development tools and related information, and the evaluation evidence. These configuration items are controlled in accordance with CM capabilities. Therefore, the verdict PASS is assigned to ALC CMS.5.

The developer's security controls on the development environment are adequate to provide the confidentiality and integrity of the TOE design and implementation that is necessary to ensure that secure operation of the TOE is not compromised. Additionally, sufficiency of the measures as applied is intended be justified. Therefore, the verdict PASS is assigned to ALC_DVS.2.

The delivery documentation describes all procedures used to maintain security of the TOE when distributing the TOE to the user. Therefore, the verdict PASS is assigned to ALC DEL.1.

The correct version of the dependent component was installed on the correct version of the base component. The delivery procedures of the base and dependent component developers are compatible with the composite product integrator's acceptance procedures. Therefore, the verdict PASS is assigned to ALC COMP.1.

Also, the evaluator confirmed that the correct version of the embedded software is installed onto/into the correct version of the underlying IC chip, and the delivery procedures of IC chip and embedded software developers are compatible with the acceptance procedure of the composite product integrator according to the CCRA supporting document Composite Product Evaluation [16].

Thus, the security procedures that the developer uses during the development and maintenance of the TOE are adequate. These procedures include the life-cycle model used by the developer, the configuration management, the security measures used

throughout TOE development, the tools used by the developer throughout the life-cycle of the TOE, the handling of security flaws, and the delivery activity.

The verdict PASS is assigned to the assurance class ALC.

9.3 Guidance Documents Evaluation (AGD)

The procedures and steps for the secure preparation of the TOE have been documented and result in a secure configuration. Therefore, the verdict PASS is assigned to AGD_PRE.1.

The operational user guidance describes for each user role the security functionality and interfaces provided by the TSF, provides instructions and guidelines for the secure use of the TOE, addresses secure procedures for all modes of operation, facilitates prevention and detection of insecure TOE states, or it is misleading or unreasonable. Therefore, the verdict PASS is assigned to AGD_OPE.1.

Thus, the guidance documents are adequately describing the user can handle the TOE in a secure manner. The guidance documents take into account the various types of users (e.g. those who accept, install, administrate or operate the TOE) whose incorrect actions could adversely affect the security of the TOE or of their own data.

The verdict PASS is assigned to the assurance class AGD.

9.4 Development Evaluation (ADV)

The TOE design provides a description of the TOE in terms of subsystems sufficient to determine the TSF boundary, and provides a description of the TSF internals in terms of modules. It provides a detailed description of the SFR-enforcing and SFR-supporting modules and enough information about the SFR-non-interfering modules for the evaluator to determine that the SFRs are completely and accurately implemented; as such, the TOE design provides an explanation of the implementation representation. Therefore, the verdict PASS is assigned to ADV_TDS.4.

The developer has completely described all of the TSFI in a manner such that the evaluator was able to determine whether the TSFI are completely and accurately described, and appears to implement the security functional requirements of the ST. Therefore, the verdict PASS is assigned to ADV_FSP.5.

The TSF is structured such that it cannot be tampered with or bypassed, and TSFs that provide security domains isolate those domains from each other. Therefore, the verdict PASS is assigned to ADV_ARC.1. Also, the evaluator confirmed that the requirements

according to the CCRA supporting document ADV_ARC Evaluation [23], [24].

The implementation representation is sufficient to satisfy the functional requirements of the ST and is a correct realisation of the low-level design. Therefore, the verdict PASS is assigned to ADV_IMP.1.

The TSF internal is well-structured such that the likelihood of flaws is reduced and that maintenance can be more readily performed without the introduction of flaws. Therefore, the verdict PASS is assigned to ADV_INT.2.

The requirements for the dependent component imposed by the base component have been confirmed to be met in the composite product. Therefore, the verdict PASS is assigned to ADV_COMP.1.

Also, the evaluator confirmed that the requirements on the embedded software, imposed by the IC chip, are fulfilled in the composite product according to the CCRA supporting document Composite Product Evaluation [16].

Thus, the design documentation is adequate to understand how the TSF meets the SFRs and how the implementation of these SFRs cannot be tampered with or bypassed. Design documentation consists of a functional specification (which describes the interfaces of the TSF), a TOE design description (which describes the architecture of the TSF in terms of how it works in order to perform the functions related to the SFRs being claimed), an implementation description (a source code level description), and TSF internals description (which describes evidence of the structure of the design and implementation of the TSF). In addition, there is a security architecture description (which describes the architectural properties of the TSF to explain how its security enforcement cannot be compromised or bypassed).

The verdict PASS is assigned to the assurance class ADV.

9.5 Test Evaluation (ATE)

The developer has tested all of the TSFIs, and that the developer's test coverage evidence shows correspondence between the tests identified in the test documentation and the TSFIs described in the functional specification. Therefore, the verdict PASS is assigned to ATE_COV.2.

The developer has tested all the TSF subsystems and modules against the TOE design and the security architecture description. Therefore, the verdict PASS is assigned to ATE_DPT.3.

The developer correctly performed and documented the tests in the test documentation. Therefore, the verdict PASS is assigned to ATE_FUN.1.

By independently testing a subset of the TSF, the evaluator confirmed that the TOE behaves as specified in the design documentation, and had confidence in the developer's test results by performing all of the developer's tests. Therefore, the verdict PASS is assigned to ATE_IND.2.

The composite product as a whole was confirmed to exhibit the necessary attributes to satisfy the functional requirements of the composite ST. Therefore, the verdict PASS is assigned to ATE_COMP.1.

Also, the evaluator confirmed that composite product as a whole exhibits the properties necessary to satisfy the functional requirements of its ST according to the CCRA supporting document Composite Product Evaluation [16].

Thus, the TOE behaves as described in the ST and as specified in the evaluation evidence (described in the ADV class).

The verdict PASS is assigned to the assurance class ATE.

9.6 Vulnerability Assessment (AVA)

By penetrating testing, the evaluator confirmed that there are no exploitable vulnerabilities by attackers possessing High attack potential in the operational environment of the TOE. Therefore, the verdict PASS is assigned to AVA_VAN.5.

The composite TOE as a whole was confirmed to be free of exploitable flaws or vulnerabilities within its intended environment. Therefore, the verdict PASS is assigned to AVA COMP.1.

Also, the evaluator confirmed that there is no exploitability of flaws or weakness in the composite TOE as a whole in the intended environment according to the CCRA supporting document Composite Product Evaluation [16],[17],[18],[19].

Thus, potential vulnerabilities identified, during the evaluation of the development and anticipated operation of the TOE or by other methods (e.g. by flaw hypotheses or quantitative or statistical analysis of the security behaviour of the underlying security mechanisms), don't allow attackers possessing High attack potential to violate the SFRs.

The verdict PASS is assigned to the assurance class AVA.

9.7 Evaluation Result Summary

Class	Component	Action Elements	Evaluator Action Elements	Assurance Component	Assurance Class
ASE	ASE_INT.1	ASE_INT.1.1E	PASS	PASS	PASS
		ASE_INT.1.2E	PASS		
	ASE_CCL.1	ASE_CCL.1.1E	PASS	PASS	
	ASE_SPD.1	ASE_SPD.1.1E	PASS	PASS	
	ASE_OBJ.2	ASE_OBJ.2.1E	PASS	PASS	
	ASE_ECD.1	ASE_ECD.1.1E	PASS	PASS	
		ASE_ECD.1.2E	PASS		
	ASE_REQ.2	ASE_REQ.2.1E	PASS	PASS	
	ASE_TSS.1	ASE_TSS.1.1E	PASS	PASS	
		ASE_TSS.1.2E	PASS		
	ASE_COMP.1	ASE_COMP.1.1E	PASS	PASS	
ALC	ALC_LCD.1	ALC_LCD.1.1E	PASS	PASS	PASS
	ALC_TAT.2	ALC_TAT.2.1E	PASS	PASS	
		ALC_TAT.2.2E	PASS		
	ALC_CMS.5	ALC_CMS.5.1E	PASS	PASS	
	ALC_CMC.4	ALC_CMC.4.1E	PASS	PASS	
	ALC_DVS.2	ALC_DVS.2.1E	PASS	PASS	
		ALC_DVS.2.2E	PASS		
	ALC_DEL.1	ALC_DEL.1.1E	PASS	PASS	
	ALC_COMP.1	ALC_COMP.1.1E	PASS	PASS	
		ALC_COMP.1.2E	PASS		
AGD	AGD_PRE.1	AGD_PRE.1.1E	PASS	PASS	PASS
		AGD_PRE.1.2E	PASS	PASS	
	AGD_OPE.1	AGD_OPE.1.1E	PASS	PASS	
ADV	ADV_TDS.4	ADV_TDS.4.1E	PASS	PASS	PASS
		ADV_TDS.4.2E	PASS	PASS	
	ADV_FSP.5	ADV_FSP.5.1E	PASS	PASS	
		ADV_FSP.5.2E	PASS		
	ADV_ARC.1	ADV_ARC.1.1E	PASS	PASS	
	ADV_IMP.1	ADV_IMP.1.1E	PASS	PASS	
	ADV_INT.2	ADV_INT.2.1E	PASS	PASS	
		ADV_INT.2.2E	PASS	1	

		Evaluator	Verdict			
Assurance Class	Assurance Component	Action Elements	Evaluator Action Elements	Assurance Component	Assurance Class	
	ADV_COMP.1	ADV_COMP.1.1E	PASS	PASS		
ATE	ATE_COV.2	ATE_COV.2.1E	PASS	PASS	PASS	
	ATE_DPT.3	ATE_DPT.3.1E	PASS	PASS		
	ATE_FUN.1	ATE_FUN.1.1E	PASS	PASS		
	ATE_IND.2	ATE_IND.2.1E	PASS	PASS		
		ATE_IND.2.2E	PASS			
		ATE_IND.2.3E	PASS			
	ATE_COMP.1	ATE_COMP.1.1E	PASS	PASS		
AVA	AVA_VAN.5	AVA_VAN.5.1E	PASS	PASS	PASS	
		AVA_VAN.5.2E	PASS			
		AVA_VAN.5.3E	PASS			
		AVA_VAN.5.4E	PASS			
	AVA_COMP.1	AVA_COMP.1.1E	PASS	PASS		

[Table 5] Evaluation Result Summary

10. Recommendations

The TOE security functionality can be ensured only in the evaluated TOE operational environment with the evaluated TOE configuration, thus the TOE shall be operated by complying with the followings:

- The Guidance documents listed in this report chapter 6, contain necessary information about the usage of the TOE and all security recommendations have to be considered. All aspects of Assumptions, Threats and Organizational Security Policies in the ST [9][10] not covered by the TOE itself need to be fulfilled by the operational environment of the TOE.
- As the TOE supports S3D384E Revision 2 as the IC chip platform, it is recommended to refer to the user's manual provided along with the TOE and check the identification information of the TOE.
- When secure messaging is not applied during personalization phase according to the policy of the Personalization Agent, it is strongly recommended that the physical, procedural and personal security measures are in place in order to

- ensure confidentiality and integrity of the transmitted data during personalization phase.
- It has to be ensured that MRZ data which are used to derive BAC authentication keys provides sufficient entropy to withstand related attacks.
- The TOE supports both SAC and BAC to ensure global interoperability. Thus, the Inspection System SHOULD use SAC instead of BAC.
- Note that the BAC mechanism cannot resist attacks with high attack potential.
 If nevertheless BAC has to be used, it is recommended to perform Chip Authentication before getting access to data (except EF.DG14), as this mechanism is resistant to high potential attacks.
- When accepting the TOE, it is recommended that the TOE user shall verify the integrity of the Flash code and data according the user's manual provided along with the TOE.

11. Security Target

KCOS e-Passport Version 5.1 – SAC, EAC and AA on S3D384E Security Target V2.4, September 22, 2025 [9] is included in this report by reference. For the purpose of publication, it is provided as sanitized version [10] according to the CCRA supporting document ST sanitizing for publication [20].

12. Acronyms and Glossary

APDU Application Protocol Data Unit

CC Common Criteria

DG Data Group

EAL Evaluation Assurance Level

ICAO International Civil Aviation Organization

IS Inspection System

BIS BAC/SAC supporting Inspection System

EIS EAC supporting Inspection System

MRTD Machine Readable Travel Document

MRZ Machine Readable Zone

PP Protection Profile

SAR Security Assurance Requirement
SFR Security Functional Requirement

ST Security Target

TOE Target of Evaluation

TSF TOE Security Functionality

AA The security mechanism with which the IC chip

(Active Authentication) demonstrates its genuine to the IS by signing random number transmitted from the IS and the IS verifies

genuine of the IC chip through verification with the

signed values

Application Protocol Standard communication messaging protocol between a

card accepting device and a smart card. The structure of

the APDU is defined by ISO/IEC 7816-4

BAC The security mechanism that implements the symmetric

(Basic Access Control) key-based entity authentication protocol for mutual

authentication of the MRTD chip and the IS (BIS) and the symmetric key-based key distribution protocol to

generate the session keys necessary in establishing the

secure messaging for the MRTD chip and the IS

DS (Document Signer) The certificate of the Personalization agent signed with

the digital signature generation key of the PA-PKI root

CA used by the IS to verify the SOD of the PA security

mechanism

Control) chip authentication and the EAC-TA for the IS

authentication in order to enable only the EAC

supporting Inspection System (EIS) to read the biometric

data of the ePassport holder for access control to the

biometric data of the ePassport holder stored in the

MRTD chip

ePassport The passport embedded the contactless IC chip in which

identity and other data of the ePassport holder stored in accordance with the International Civil Aviation

Organization (ICAO) and the International Standard

Data Unit (APDU)

Certificate

Organization (ISO)

IS

(Inspection System)

As an information system that implements optical MRZ reading function and the security mechanisms (PA, BAC, SAC, EAC and AA, etc.) to support the MRTD inspection, the IS consists with a terminal that establishes the RF communication with the IC chip and the system that transmits commands to the IC chip through this terminal and processes responses for the commands

LDS

(Logical Data Structure)

MRTD

Logical data structure defined in the ICAO document in order to store the user data in the MRTD chip

Machine Readable Travel Document, e.g. passport, visa or official document of identity accepted for travel purposes

MRTD Application

Program for loaded in the MRTD chip that is programmed by the LDS of the ICAO document and provides security mechanisms of BAC, SAC, PA and EAC, etc.

MRTD Chip

The contactless IC chip that includes the MRTD application and the IC chip operating system necessary in operation of the MRTD application and that supports communications protocol by ISO/IEC 14443

PA

(Passive Authentication)

The security mechanism to demonstrate that identity data recorded in the MRTD has not been forgery and corruption as the IS with the DS certificate verifies the digital signature in the SOD and hash value of user data in accordance with read-right of the MRTD access control policy

Personalization Agent

The agent receives the ePassport identity data from the Reception organization and generates the SOD by digital signature on the data. After recording them in the IC chip, the personalization agent generates TSF data and stores it in the secure memory of the IC chip. The agent also operates PA-PKI and/ or EAC-PKI

SAC

(Supplemental Access

The security mechanism is supplementary to BAC. The SAC performs mutual authentication for the MRTD chip

Control) and the IS (BIS) to access control of user data of the

MRTD and establishes the secure messaging for the

MRTD chip and the IS

SOD The SOD refers to the ePassport user data recorded in

(Document Security Object) the Personalization phase by the Personalization agent

that is signed by the Personalization agent with the

digital signature generation key

13. Bibliography

The certification body has used following documents to produce this report.

- [1] Common Criteria for Information Technology Security Evaluation, CC:2022 Revision 1, CCMB-2022-11-001 ~ CCMB-2022-11-005, November 2022.
 - Part 1: Introduction and general model
 - Part 2: Security functional components
 - Part 3: Security assurance components
 - Part 4: Framework for the specification of evaluation methods and activities
 - Part 5: Pre-defined packages of security requirements
- [2] Common Methodology for Information Technology Security Evaluation, CC:2022 Revision 1, CCMB-2022-11-006, November 2022.
- [3] Errata and Interpretation for CC:2022 (Release 1) and CEM:2022 (Release 1), Version 1.1, CCMB-2024-07-002, July 2024
- [4] Korea IT Security Evaluation and Certification Guidelines (Ministry of Science and ICT Guidance No. 2022-61, October 31, 2022)
- [5] Korea IT Security Evaluation and Certification Regulation (Ministry of Science and ICT-ITSCC, May 17, 2021)
- [6] Doc9303 Machine Readable Travel Documents Seventh Edition, International Civil Aviation Organization (ICAO), 2015
- [7] Technical Guideline TR-03110 Advanced Security Mechanisms for Machine Readable Travel Documents and elDAS Token, Version 2.20, Bundesamtfür Sicherheitinder Informationstechnik (BSI), February 2015
- [8] TTA-CCE-24-003 KCOS e-Passport Version 5.1 SAC, EAC and AA on S3D384E Evaluation Technical Report V1.3, September 25, 2025
- [9] KCOS e-Passport Version 5.1 SAC, EAC and AA on S3D384E Security Target V2.4, September 22, 2025 (Confidential Version)

- [10] KCOS e-Passport Version 5.1 SAC, EAC and AA on S3D384E Security Target Lite V1.1, September 22, 2025 (Sanitized Version)
- [11] Protection Profile Machine Readable Travel Document using Standard Inspection Procedure with PACE Version 1.01, BSI-CC-PP-0068-V2-2011-MA-01, July 2014
- [12] Protection Profile Machine Readable Travel Document with "ICAO Application", Extended Access Control with PACE Version 1.3.2, BSI-CC-PP-0056-V2-2012, December 2012
- [13] Certification Report ANSSI-CC-2024/02-R01 S3D384E/S3D352E/S3D300E/ S3D264E/S3D232E/S3K384E (S3D384E_20240730), December 18, 2024, ANSSI
- [14] Security Target Lite of S3D384E/S3D352E/S3D300E/S3D264E/S3D232E/ S3K384E Version 2.1, August 5, 2024
- [15] Application Notes and Interpretation of the Scheme (AIS), AIS 34, Version 3, BSI, March 9, 2009
- [16] Composite product evaluation for Smartcards and similar devices Version 1.6, JIL, April 2024
- [17] Application of Attack Potential to Smartcards Version 3.2.1, JIL, February 2024
- [18] The Application of CC to Integrated Circuits for CC:2022 Version 4.0, JIL, April 2024
- [19] Minimum ITSEF Requirements for Security Evaluation of Smart cards and similar devices Version 2.1, JIL, February 2022
- [20] ST sanitising for publication, CCDB-2006-04-004, April 2006
- [21] ISO/IEC 7816 Identification cards Integrated circuit(s) cards with contacts
- [22] ISO/IEC 14443 Identification cards Contactless ICCs Proximity cards
- [23] Security Architecture requirements (ADV_ARC) for smart cards and similar devices extended to Secure Sub-Systems in SoC, Version 2.1, JIL, July 2021
- [24] Security Architecture requirements (ADV_ARC) for smart cards and similar devices extended to Secure Sub-Systems in SoC - Appendix 1, Version 2.1, JIL, July 2021